Groups with maximum vertex degree commuting graphs

نویسندگان

چکیده

Let G be a finite non-abelian group and Z(G) its center. We associate commuting graph $$\Gamma (G)$$ to G, whose vertex set is $$G\setminus Z(G)$$ two distinct vertices are adjacent if they commute. In this paper we prove that the of all groups has maximum degree bounded above by fixed $$k \in {\mathbb {N}}$$ finite. Also, characterize for which associated graphs have at most 4.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Four-Vertex Degree Graphs of Nonsolvable Groups

For a finite group G, the character degree graph ∆(G) is the graph whose vertices are the primes dividing the degrees of the ordinary irreducible characters of G, with distinct primes p and q joined by an edge if pq divides some character degree of G. We determine all graphs with four vertices that occur as ∆(G) for some nonsolvable group G. Along with previously known results on character degr...

متن کامل

ON THE GROUPS WITH THE PARTICULAR NON-COMMUTING GRAPHS

Let $G$ be a non-abelian finite group. In this paper, we prove that $Gamma(G)$ is $K_4$-free if and only if $G cong A times P$, where $A$ is an abelian group, $P$ is a $2$-group and $G/Z(G) cong mathbb{ Z}_2 times mathbb{Z}_2$. Also, we show that $Gamma(G)$ is $K_{1,3}$-free if and only if $G cong {mathbb{S}}_3,~D_8$ or $Q_8$.

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Acyclic Vertex Coloring of Graphs of Maximum Degree 4

The acyclic chromatic number of a graph G, denoted a(G), is the minimum number of colors required to properly color the vertices of a graph such that there are no bichromatic cycles. The concept of acyclic coloring of a graph was introduced by [5] and is further studied in the last two decades in several works. Kostochka [6] proves that determining it is an NP-complete problem. Given the comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Pure and Applied Mathematics

سال: 2022

ISSN: ['0019-5588', '0975-7465', '2455-0000']

DOI: https://doi.org/10.1007/s13226-022-00359-x